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We perform a comparative study of applicability of the multifractal detrended fluctuation analysis (MFDFA)
and the wavelet transform modulus maxima (WTMM) method in proper detecting of monofractal and multi-
fractal character of data. We quantify the performance of both methods by using different sorts of artificial
signals generated according to a few well-known exactly soluble mathematical models: monofractal fractional
Brownian motion, bifractal Lévy flights, and different sorts of multifractal binomial cascades. Our results show
that in the majority of situations in which one does not know a priori the fractal properties of a process,
choosing MFDFA should be recommended. In particular, WTMM gives biased outcomes for the fractional
Brownian motion with different values of Hurst exponent, indicating spurious multifractality. In some cases
WTMM can also give different results if one applies different wavelets. We do not exclude using WTMM in
real data analysis, but it occurs that while one may apply MFDFA in a more automatic fashion, WTMM must
be applied with care. In the second part of our work, we perform an analogous analysis on empirical data
coming from the American and from the German stock market. For this data both methods detect rich multi-
fractality in terms of broad f(a), but MFDFA suggests that this multifractality is poorer than in the case of

WTMM.
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I. INTRODUCTION

It is well known that the self-similarity of fractal struc-
tures can be described by the so-called Holder exponents or
the local Hurst exponents «. If the fractal is homogenous
(monofractal) then it can be associated with only one Holder
exponent, while in the case of a multifractal, different parts
of the structure are characterized by different values of «,
leading to the existence of the whole spectrum f(a). In
contrast to model fractals with a precise scaling, many frac-
tals, both the mathematical and the natural, reveal only a
statistical scaling and this in particular refers to the so-called
fractal signals. An exemplary temporal process with a trivial
monofractal scaling is the fractional Gaussian noise; this pro-
cess has only one « equal to 0.5 for the uncorrelated motion
and a# 0.5 if any linear correlations exist in the signal. On
the other hand, a process with either non-Gaussian fluctua-
tions or with nonlinear temporal correlations can be multi-
fractal, and two or more values of « or even a continuous
spectrum f(a) can be needed to characterize structure of
such a process.

In recent years much effort has been devoted to reliable
identification of the multifractality in real data coming from
such various fields like, e.g., DNA sequences [1-3], physiol-
ogy of human heart [4,5], neuron spiking [6], atmospheric
science and climatology [7-10], financial markets [11-20],
geophysics [21] and many more. This is, however, a difficult
task mainly due to the fact that experimental data related to
physiology, economy or climate is highly nonstationary and,
additionally, the available data samples are usually rather
small. One thus requires to apply methods which are insen-
sitive to nonstationarities like trends and heteroskedasticity.
In principle there are two competitive methods of detection
of the multifractality which are commonly used in this con-
text; both supposed to eliminate trends and concentrate on
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the analysis of fluctuations. Multifractal detrended fluctua-
tion analysis (MFDFA) [1,22,23] is based on the identifica-
tion of scaling of the gth-order moments that power-law de-
pend on the signal length and is a generalization of the
standard DFA using only the second moment g=2. The other
method, wavelet transform modulus maxima (WTMM)
[24-26], consists in detection of scaling of the maxima lines
of the continuous wavelet transform on different scales in the
time-scale plane. This procedure is advocated as especially
suitable for analyzing the nonstationary time series [27].

We therefore test and compare the applicability of those
two methods to the data coming from either a few math-
ematical fractal models or empirical data collected from the
stock market. In this work we represent a point of view of a
practitioner who wants to choose a better tool for his analy-
ses without entering subtle theoretical considerations. A
deeper analytical research, although important and desired in
general, remains beyond the scope of this work.

That data from various markets like the stock market, the
foreign currency market and the commodity one are of mul-
tifractal nature, it is well known from numerous recent stud-
ies [11-20], that were carried out with the help of both meth-
ods. A few years ago the multifractal model of asset returns
was developed [28,29] in order to explain the origin of this
multifractality. This model and its later modifications
[30-33] use the multiplicative cascades which generate sig-
nals that are inherently multifractal and that are able to
mimic some key properties of financial data. The rationale
behind the introduction of such a model was the observed
correspondence between financial market evolution and fluid
turbulence [34]. From the other point of view, the existence
of the so-called financial stylized facts (fat tails of the fluc-
tuation distributions and long-lasting nonlinear correlations
in the signals) [35-39] can also be considered a source of the
multifractal dynamics [18-20].
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Our paper is organized as follows: In Sec. II, we briefly
sketch the foundations of the MFDFA and WTMM methods.
We apply them to a few types of model data like Brownian
motion, Lévy process, and binomial multiplicative cascades
in Sec. III. In Sec. IV we illustrate the performance of both
methods in a context of real financial signals and, finally, we
arrive at the concluding remarks in Sec. V.

II. DESCRIPTION OF METHODS
A. Multifractal detrended fluctuation analysis

The detrended fluctuation analysis [1] has recently be-
come a commonly used tool in analyses of scaling properties
of monofractal signals and in identifying correlations present
in noisy nonstationary time series [22]. The multifractal gen-
eralization of this procedure {(MFDFA(l))} [22] can be
briefly sketched as follows. First, for a given time series x(i),
i=1,...,N on a compact support, one calculates the inte-
grated signal profile Y(j),

J
Y(j)= 2 ()= (x), j=1,....N, (1)
i=1

where (- --) denotes averaging over the time series, and then
one divides it into M, segments of length n (n<<N) starting
from both the beginning and the end of the time series (i.e.,
2M,, such segments total). Each segment » has its own local
trend that can be approximated by fitting an /th order poly-
nomial PE}I) and subtracted from the data; next, the variances
for all the segments v and all segment lengths » must be
evaluated

P =S (-0 - PIGP. @)
j=1

Finally, F*(v,n) is averaged over v’s and the gth-order
fluctuation function is calculated for all possible segment
lengths n:

1 2M,, 1/q
Fq(n)=<ﬂE[F2(v,n)]q/2) ., geR. (3)
nv=1

The key property of F,(n) is that for a signal with fractal
properties, it reveals power-law scaling within a significant
range of n,

F,(n) ~ n"@. (4)

The result of the MFDFA(/) procedure is the family of ex-
ponents h(g) (called the generalized Hurst exponents) which,
for an actual multifractal signal, form a decreasing function
of g, while for a monofractal h(g)=const. The singularity
spectrum of the Holder exponents f(«) can easily be ob-
tained from the generalized Hurst exponents by the follow-
ing relations [40]:

a=h(g)+qh'(q), fla)=qla-h(g)]+1. (5)

«a characterizes the strength of singularities and f(a) can be
considered the fractal dimension of a subset of the time se-
ries with singularities of strength equal to a.
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FIG. 1. Example of a monofractal function: the devil’s staircase
obtained by integrating the Cantor measure. (a) Analyzed signal
(top) and its wavelet transform 7', (bottom) are presented together
with (b) the singularity spectrum f(a) (main) and the scaling expo-
nent 7(g) (inset). The wavelet used in this calculation was 3.

B. Wavelet transform modulus maxima method

The alternative wavelet transform modulus maxima
method is a technique based on the wavelet transform
[24-26],

I (i-n
Ty(n,s") = ;E lﬂ(T)JC(i), (6)
i=1

where ¢ is a wavelet kernel shifted by n and s’ is scale. The
wavelet method can serve as a tool for decomposing the
signal in time-scale plane; the resulting wavelet spectrum
T¢(n,s’) can reveal a hierarchical structure of singularities
(see Fig. 1). As a criterion for the choice of the mother wave-
let ¢, a good localization in space and in frequency domains
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is recommended. The family of wavelets which is used most
frequently in this case is the mth derivative of a Gaussian

(€7, (7)

dm
() (x) =
170 ( ) ™
because it removes the signal trends that can be approxi-
mated by polynomials up to (m—1)th order [22].
In the presence of a singularity in data one observes the
power-law behavior of the coefficients T,

T y(ng,s") ~ s' o), (8)

This relation, however, is not stable in the case of densely
packed singularities; it is thus much better if one identifies
the local maxima of T, and then calculates the partition func-
tion from moduli of the maxima

2 |Tyln(s").s")

leL(s")

Z(q.s") = 1, )

where L(s') denotes the set of all maxima for scale s’ and
ny(s”) stands for the position of a particular maximum. In
order to preserve the monotonicity of Z(g,s') on s’, one
must impose an additional supremum condition

Z(g.s) = > { sup |T¢[n,(s"),s"]|}". (10)

leL(s") "=s'

For a signal with a fractal structure, we expect that
Z(g,s')~s'"9. The singularity spectrum f(a) can now be
obtained according to the following formulas [40]:

and f(a)=qga-1(g). (11)

Additionally, there is a relation between 7(g) and the gener-
alized Hurst exponents

m(q) = gh(g) - 1. (12)

Linear behavior of 7(g) indicates monofractality whereas
nonlinear behavior suggests that a signal is multifractal. An
example illustrating the WTMM procedure is shown in Fig.
1 for the devil’s staircase obtained by integrating the Cantor
measure. It should be explained that we calculate « locally
near each g and this can sometimes lead to an unexpected
shape of f(w) as it is seen in Fig. 1(b).

a=171(q)

III. COMPUTER GENERATED DATA

First we shall consider a few examples of signals associ-
ated with some well-known processes for which the exact
theoretical results are available. Our objective is to confront
the outcomes of the analyzed methods against theory and
detect advantages or disadvantages of each of the two pro-
cedures. Our analysis of artificial data concentrates on sev-
eral important issues regarding the performance of MFDFA
and WTMM:

(i) method’s ability of correctly identifying monofractal
or multifractal character of signals,

(ii) method’s precision in evaluating f(a) spectra that
agree with respective theoretical predictions,

(iii) stability of results across different variants of
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MFDFA (different polynomials) and of WTMM (different
wavelets),

(iv) stability of results across different realizations of a
given stochastic process,

(v) method’s ability of providing one with correct results
for short signals,

(vi) quality of scaling in F,(s) and Z(g,s") and sensitivity
of the results to distinct choice of a fitting range of s or s’.

For the sake of consistency, we did not apply WTMM to
original signals but rather to their integrated versions; this
allowed us to compare the results of WTMM with the ones
of MFDFA which in fact also analyze the integrated signal
profile Y(j) instead of x(j) [see Eq. (1)]. In order to be able to
compare the results from both the F, and the Z function, we
also must derive

|S’Z(q,s')|”q~s’h(q). (13)

It is noteworthy that for the data analyzed here we deal with
the two main possible sources of multifractality: the nonlin-
ear temporal correlations and the broad probability density
functions. Finally, we must mention that an earlier approach
to a comparison of MFDFA and WTMM [22] which was
only briefly sketched there, showed that the former method
can provide one with the results being in a better agreement
with theoretical predictions than does the latter one. How-
ever, such a comparison was not a central issue of the cited
work which was rather concentrated on the performance of
MFDFA itself. Here we present a more thorough study on
this subject.

A. Monofractal signals: Brownian motion

We start our comparative study with testing each meth-
od’s ability of identifying and quantifying monofractal data.
This is of great importance since in many practical situations
the question which is usually addressed first is whether data
under study is monofractal or multifractal. In general, even if
a method works satisfactorily well for very long signals, it
may happen that for typical experimental time series the
finite-size effects would lead to broadening of the f(«a) spec-
tra which are no longer pointlike and this, obviously, may
cause a spurious detection of multifractality. We would pre-
fer a method which works more robust in such situations.

1. Classical Brownian motion

The first data type which we investigate is a simple case
of a monofractal time series represented by the classical
Brownian motion with the Hurst exponent H=0.5. This pro-
cess can be classified as stochastic with the stationary, inde-
pendent and Gaussian-distributed increments. In order to ob-
tain statistically significant results we carry out calculations
on K=10 independent realizations of this process. Theoreti-
cal spectrum consists here of one point localized at a=0.5
and f(a)=1 [Eq. (5)].

The uppermost panel of Fig. 2 shows exemplary plots of
the fluctuation function [Eq. (4), open symbols] and the res-
caled partition function [Eq. (13), filled symbols] for a single
realization of the process and for a few different values of
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FIG. 2. (Color online) Classical Brownian motion H=0.5: (a)
Fluctuation function F,(s) (open symbols) and rescaled partition
function [sZ(g,s/41)]"4 (filled symbols) for different values of Ré-
nyi parameter: g=-5 (squares), g=-2 (triangles up), g=2 (circles),
and ¢g=5 (triangles down). Note that the plots for different ¢’s were
vertically shifted in order to improve readability. Calculations were
carried out on time series of length N=130 000 by applying P® and
/). Functional dependence of mean scaling exponent 7(g) was
derived from F,(s) in MFDFA (b) and from Z(q,s") in WTMM (c)
and compared with its theoretical form (solid line).

the Rényi parameter g. As it can be seen, high absolute val-
ues of ¢ typically correspond to plots with worse scaling,
while small |g|’s are associated with plots exhibiting more
clear power-law shape. This observation is valid for both
MFDFA and WTMM, but in this particular case of a Brown-
ian process, scaling for ¢ <0 is worse in WTMM than it is in
MEFDFA. This may cause some ambiguity in choosing a plot
range for which the fitting procedure according to Eq. (13) is
applied. This ambiguity can affect determining 7(g) and thus
can introduce undesired values of a# 0.5.

Taking all independent process realizations into our con-
sideration, we derive the mean multifractal spectra
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K
g) =2 ™(g), (14)
k=1

where the average is taken over all individual data samples.
The so-calculated spectra (symbols) can be seen in the bot-
tom part of Fig. 2 together with the theoretical linear spec-
trum (solid line). We applied the third derivative of a Gauss-
ian (¢°) which is orthogonal, thus insensitive, to quadratic
trends in a signal. For consistency, in MFDFA we chose
polynomials P*) [MFDFA(2)] and therefore we were also
able to remove trends up to quadratic one.

An issue which must be examined in this context is the
range of ¢ used in the analysis. On the one hand, it should be
as wide as possible in order for the method to be capable of
detecting even subtle multifractal effects in a signal. Thus, by
taking an extremely narrow range of the Rényi parameter
one might see a false, almost pointlike f(«) even for a signal
actually comprising a variety of singularities of different
strength. On the other hand, taking a too large |g| can pro-
duce statistically meaningless results based on an insufficient
number of time series points. Figure 3 shows how the mean
singularity spectra f(a) calculated from 7{g) according to
formula (11) for the classical Brownian motion depend on
g-range used: -3=¢=3 (top), -5=¢=5 (middle), and
—-10=¢=10 (bottom). The most striking feature is a broad
f(a) calculated by means of WTMM (right-hand column) as
compared to its MFDFA counterpart (left-hand column). It is
interesting that only MFDFA gives a perfect identification of
monofractality for the most narrow interval of |¢| =3, while
WTMM does not. In the middle panels we see that while
MFDFA still offers the spectrum that can approximately be
considered a single point, WTMM shows f(a) of a signifi-
cant nonzero width Aa:=a(qgmnin)—®(gmax) that can even
suggest a sort of multifractal scaling. By extending g up to
+10, WTMM completely fails: the shape of the correspond-
ing singularity spectrum becomes evidently multifractal. In
contrast, despite its parabollic shape, f(a) for MFDFA is still
defined on a relatively narrow A« not allowing us to errone-

FIG. 3. (Color online) Classical Brownian

—+ motion H=0.5: Mean singularity spectra M
7 (open circles) obtained by using MFDFA (P?),
left-hand column) and WTMM (%, right-hand
- column) procedures for different range of Rényi
parameter ¢: -3=¢g=3 (top), -5=¢=35
(middle), and —10=¢g =10 (bottom). Time series

MFDFA

of length N=130 000 were used; error bars indi-
cate standard deviation of data points calculated
from 10 independent realizations of the process.
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ously assume a multifractal character of the underlying pro-
cess. In each panel, standard deviations of f(«) are denoted
by horizontal and vertical error bars.

There is no simple and straightforward explanation of
how such a discrepancy between MFDFA and WTMM does
occur. We have already seen in Fig. 2 some problems with
scaling of the partition function Z(q,s’) for ¢’s distant from
zero. However, this lack of an ideal power-law behavior can-
not fully account for the observed strong deviation of f(«)
from its theoretically predicted form. This is because we car-
ried out analogous calculations for a few different possible
intervals of scales in which the fitting of Z(g,s’) was done
according to Eq. (13), and in each case we eventually arrived
at the qualitatively similar f(a) spectra. Another source of
error can potentially be a poor statistics of data. Let us re-
write Eq. (10) in the following form:

Zg.s)= 2 O (15)
leL(s")

and then let us define an effective number of maxima used in
the calculation of Z(g,s’) for a fixed ¢ and s’ and express it
by a fraction of the total number of detected maxima,

1
R%?,)TMM(S’ = X min # (l e L(s'):z BO(s') = 0.9Z(q,s')),
I

(16)

where [ and L(s’) have the same meaning as in Eq. (10) and
A=#L(s"). We also define a similar quantity for MFDFA:

1 . 1 /g
R\frpra(n) = 37 min # {V(EE [F?(n, v)]"/z)

= 0.9Fq(n)} , (17)

where v, M,, and F? are the same as in Eq. (3). Both these
quantities are presented in Fig. 4 for three choices of ¢<<0
and for a few different process realizations. As the plots
show, for g=-3 and g=-5 both the estimates of Z(g,s’) and
of F,(n) are based on a significant fraction of data for a vast
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FIG. 4. Classical Brownian motion H=0.5:
Fraction R@ of the total number of signal seg-
ments (MFDFA) and of the total number of the
maxima lines [ € L(s") (WTMM) effectively used
in calculation of F,(n) for MFDFA (P, left-
hand column) and of Z(g,s') for WITMM (%,
right-hand column). Plots for different negative
values of g are shown: g=-3 (top), g=-5
(middle), and g=-10 (bottom), with three differ-
ent independent process realizations of length
N=130000 (denoted by distinct symbols and
lines). Note that for both methods only such
ranges of n and s’ that were associated with the
central stable parts of R were considered in cal-
culation of 7(g).

majority of s’ or n values. In contrast, for g=—10 the statis-
tics is evidently poorer and might be considered unsatisfac-
tory. In this case a too small fraction of the number of
maxima (even <10 maxima in absolute numbers) contributes
to the scaling functions F,(n) and Z(q,s’) and thus they de-
scribe only the scaling properties of a few largest events
instead of the properties of the whole si%nals. Curiously, de-
spite the fact that both R;Z)FDF 4 and R&’,TMM are statistically
significant for g=-5 and ¢g=-3, the output of MFDFA and
WTMM is completely different. Consistently, qualitatively
similar findings were also obtained for the other types of
monofractal processes studied in this work. Thus we are jus-
tified to conclude that data statistics cannot be among prin-
cipal sources of discrepancy in precision of both methods.
Based on these outcomes, from now on we will restrict
our analysis to -5=¢g=5. We sample this parameter with
Ag=0.1 frequency for |¢| =3 and with Ag=0.5 for |g| > 3.
The above discussion might indicate that a problem with
the incorrect quantifying monofractal processes by WTMM
as compared to MFDFA can rather be inherent to the
WTMM procedure. For example, it may require significantly
longer time series than does the detrended fluctuation
method in order to obtain a good convergence in Eq. (10) for
larger |g|’s. Therefore, in order to investigate how the meth-
ods work in respect to sample size, for the same type of
Brownian motion we create sets of time series of different
lengths (N=15 000, N=65 000, N=130 000 data points). As
Fig. 5 shows, we observe a noticeable N-dependence of f(«)
especially for WTMM: the longer the time series, the better
agreement with theory. It can also be seen that for smaller N
the spectra produced by WTMM are much more unstable in
terms of standard deviations than are the spectra for MFDFA.
Obviously, standard deviations reveal also a strong depen-
dence on N. Thus, e.g., if N=15 000, f(«) for a single pro-
cess realization is likely to falsely indicate multifractality
and temporal correlations (persistence or antipersistence) in a
completely random, uncorrelated signal. MFDFA seems to
be more powerful here since even for short signals the stan-
dard deviations are acceptably small and the maximum of the
average spectrum lies almost ideally at @=0.5. In contrast,
for the signals as long as N=130 000, WTMM provides us
with the results that are not satisfactory. Perhaps, for much
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FIG. 5. (Color online) Classical Brownian motion H=0.5: m
(open circles) for different time series lengths: N=15,000 (top),
N=65000 (middle), and N=130000 (bottom). Performance of
MFDFA (P?, left column) and WTMM (), right column) is
compared. Error bars indicate standard deviation of data points cal-
culated from 10 independent realizations of the process.

longer signals of length exceeding 10° data points, the situ-
ation would improve but, from a practical point of view,
empirical signals of such a length are rarely available. This
strongly favors MFDFA as a monofractality detector.

Next, we expect the results of an analysis to be insensitive
as much as possible to a choice of the detrending polynomial
PY in MFDFA and of the Gaussian derivatives # in
WTMM. Any significant dependence would limit robustness
of a method since in the case of a real financial market one
does not know a priori which polynomial or which wavelet
function can be optimal. Figure 6 shows the mean singularity
spectra f(«) obtained by using MFDFA(/) with /=1,2,3,4.
For P!V we do not observe exactly single-point spectrum but
rather a very narrow parabola. By increasing [ we see de-
creasing Aa, the effect that is easily understandable: higher-
order polynomials can better detrend the data. It seems that
even P works sufficiently well in the present case. Suc-
cessfully, in all cases the location of the spectra agrees per-
fectly with the expected H=0.5. The corresponding results

0.75} 2 + s

3 - '

=05t + E
025k \V(l) I wa) ]

0 t t
1r o T » 1
" n

~ 075} °

3 ,

= osf + 1
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FIG. 6. (Color online) Classical Brownian motion H=0.5: f(«a)
(open circles) obtained with MFDFA for different polynomials:
from P (top left) to P (bottom right). Time series of length
N=130000 were used; error bars indicate standard deviation of
data points calculated from 10 independent realizations of the
process.
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FIG. 7. (Color online) Classical Brownian motion H=0.5: f(_a)
(open circles) obtained with WTMM for different wavelets: from
JV (top left) to ¥ (bottom right). Time series of length
N=130000 were used; error bars indicate standard deviation of
data points calculated from 10 independent realizations of the
process.

for WIMM (m=1,2,3,4) are collected in Fig. 7. We see
that although maxima of f(«) are situated correctly, the spec-
tra are definitely too wide to be considered monofractal. The
largest discrepancy between these results and the theory is
for /1), while for the higher-order derivatives the spectra are
comparable in their widths (although still far from being
monofractal). It is also noteworthy that starting from m=2,
the standard deviations tend to increase with increasing de-
rivative order. For MFDFA, where the standard deviations
are much smaller, such a behavior is not observed.

2. Fractional Brownian motion

In contrast to the above uncorrelated ordinary Brownian
motion, the fractional Brownian motion with H# 0.5 can
serve as an example of a monofractal process with temporal
correlations. Impact of these correlations on the results of
MFDFA and WTMM can be evaluated from Figs. 8—10. The
two following cases are discussed: an antipersistent process
with H=0.3 and a persistent one with H=0.75. Comparison
of the f(a) spectra in Figs. 8 and 9 calculated for different
P (MFDFA, left-hand columns) and ¢{(m) (WTMM, right-
hand columns) leads to essentially similar conclusions as in
the case of H=0.5.

(a) In each case MFDFA acts excellently for the antiper-
sistent process: it shows clearly a complete lack of multiscal-
ing. In the persistent case the spectra are less perfect, al-
though they still cannot be erroneously considered
multifractal. As compared to MFDFA, Aa for WTMM is
large and thus the corresponding WTMM spectra fail to re-
flect the actual monofractality of the signals. However, for
high Gaussian derivatives like /¥ WTMM spectrum can be
very narrow and its A« can potentially be used as an indica-
tor of possible monofractality of an analyzed signal.

(b) MFDFA provides us with the correct value of H in
both the persistent and the antipersistent case. From this
point of view WTMM also works well as regards the average
spectra, but it turns less reliable for the individual signals.
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FIG. 8. (Color online) Antipersistent fractional Brownian mo-
tion H=0.3: f(a) (open circles) for different polynomials P of
MFDFA (left-hand column) and for different Gaussian derivatives
™ of WTMM (right-hand column). Time series of length
N=130000 were used; error bars indicate standard deviation of
data points calculated from 10 independent realizations of the
process.

(c) The average outcomes of MFDFA can be accounted
stable across their different-order variants, while WTMM
tends to work better if one uses higher Gaussian derivatives
(m=3).

It should be stressed that we assume no a priori knowl-
edge of the processes underlying the data. This, for example,
distinguishes our analysis from the one carried out by au-
thors of Ref. [24] who also applied WTMM to the fractional
Brownian motion with H=0.3. They took an advantage of
the knowledge that the analyzed process had to reveal
monofractal scaling and, accordingly, they were able to fit a
straight line to the computed 7(g). As a consequence, they
obtained the exact single-point f(«). However, for data with
unknown properties one must calculate spectra by local fits
and for WTMM this leads to a dispersion of a’s even for
monofractal processes. On the other hand, the authors of Ref.
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FIG. 10. (Color online) Fractional Brownian motion: (a)
MEDFA with P® and (b) WTMM with ¢/%: Mean singularity spec-
tra (open circles) for different time series lengths: N=15 000 (top)
and N=65 000 (bottom) for the fractional Brownian motion in its
antipersistent (H=0.3, left) and persistent (H=0.75, right) variants.
Error bars indicate standard deviation of data points calculated from
10 independent realizations of each process. Plots should be com-
pared with the respective panels of Figs. 8 and 9, where signals of
N=130000 were used.

[22] carried out an MFDFA analysis based on three types of
Brownian motion (H=0.25, H=0.5, H=0.75) and they ob-
tained similar results to the ones presented here. Even more,
they were able to show that MFDFA can be reliable even for
lg| >10.

Finally, we take a look at the results obtained for different
time series lengths (Fig. 10). For the comparison purpose we
choose /=2 and m=3. For H=0.3 we see that while MFDFA
gives us a narrow spectrum even for a signal as short as
N=15000 with increasing its accuracy with increasing N,
the WTMM method occurs totally unreliable for shorter sig-
nals. The case of H=0.75 does not differ much from the

1 4 4 F .
[0 & 1 [ WO e
0.5 1 r o
0 f f L f f
Ir @ e 1 o T
05'_ 1L | FIG. 9. (Color online) Persistent fractional
e | Brownian motion H=0.75: f(«) (open circles) for
3 ok — : . I P different polynomials P of MFDFA (left-hand
= 1 @) o 1 F o i% . column) and for different Gaussian derivatives
L P Y of WTMM (right-hand column). Time series
0.5 1 r A of length N=130000 were used; error bars indi-
r 1 cate standard deviation of data points calculated
0 [+ o I : from 10 independent realizations of the process.
Ir e L] 17 @ T
0.5 1 r .
L MFDFA L WTMM
O PRI B PR I S S NS T T PR SR NS T [ TN TR S S A S S S
0 025 05 075 10 025 05 075 1
04 04
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previous one but now MFDFA slightly loses its perfect ac-
curacy and does not converge so well to a monofractal spec-
trum with increasing N. This is especially evident if a
broader range |g| =10 is used (not shown). Broadening of
the MFDFA spectrum is a gradual process that becomes
more evident for persistent signals with H>0.5. It is worth
mentioning that for both methods and for all N the maxima
of f(a) point at the correct values of a.

B. Bifractal signals: Lévy processes

The second interesting class of processes which are of
high practical utility are the stable Lévy processes. Their
applications range from physiology to financial markets; in
the latter case it is hypothesized that the modification of this
kind of processes, i.e., the truncated Lévy flights (with the
exponent-suppressed Lévy distribution tails) describes the
price fluctuations of stocks. The scaling exponent 7(g) for
the truncated Lévy flights (with the Lévy parameter «;) and
for non-Lévy signals with the tails obeying the power law
distribution P(x) ~x~(“*!) can be expressed by [22,41]

qlag=1  (g=ay),
q) = { (18)
O (q > aL)’
and the associated singularity spectrum by
1/a{L (q = aL)’ 1 (q = aL)?
a= fla) =
0 (q>ap), 0 (¢>ay).
(19)

As these expressions show, signals with the truncated Lévy
distributions are rather bifractal than multifractal [41]. From
a dynamical point of view, the bifractal spectra or, more
generally, the spectra revealing singularity in 7(g), can often
be seen in systems exhibiting phase transitions like e.g. cha-
otic systems with intermittency [42-45]. It should also be
noted that in principle the moments higher than «; do not
exist at all, but as we consider the time series of finite
lengths, we can also calculate i(g) for ¢>a;. We chose a
heavy-tailed distribution with a;=1.5 and generated K=10
time series of length N=250 000 data points each. Examples
of F,(s) and |s'Z(q,s")|" as well as of Hg) for MFDFA
(I=2) and for WITMM (m=3) are shown in Fig. 11. Scaling
of F,(s) becomes worse for large positive g’s (triangles
down), while scaling of |s'Z(g,s")|"? proves weak for
strongly negative ¢’s.

Figure 12 presents results for different variants of
MFDFA and WTMM. 1t is interesting to note that MFDFA
(left column) presents a good agreement with theory near the
bifractal points [Eq. (19)] where there are two dense clusters
of symbols. Unexpectedly, for each P we also observe a
continuous transition between these clusters. However, such
a spurious transition is rather inevitable for real data sup-
posed to exhibit two different linear regimes of 7(q) (see also
Refs. [25,43] for other examples of spectra displaying an
analogous transition). Main difference between spectra for
different values of [ is that the cluster at «=1/¢; tends to be
better localized for /> 1. On the other hand, for all Gaussian

PHYSICAL REVIEW E 74, 016103 (2006)

FIG. 11. (Color online) Lévy process «;=1.5: (a) Fluctuation
function F,(s) (open symbols) and rescaled partition function
[sZ(g,s/41)]"4 (filled symbols) for different values of Rényi pa-
rameter g=-5 (squares), g=-2 (triangles up), g=2 (circles), and
=5 (triangles down). Calculations were carried out on time series
of length N=250 000 by applying P and 3. Functional depen-
dence of mean scaling exponent 7(g) was derived from F(s) in
MFDFA (b) and from Z(g,s’) in WTMM (c) and compared with its
theoretical form (solid line).

derivatives in WTMM we observe roughly the same artificial
transition as for MFDFA, but there is also an additional spu-
rious arm of the spectrum for large « (i.e., strongly negative
q) that effectively disperses the spectrum beyond its theoret-
ical prediction. This arm can be a consequence of weak scal-
ing in Fig. 11 that in turn can be a consequence of inherent
problems with correct calculation of the multifractal spectra
for ¢ <0. In this case estimation of F,(n) or Z(g,s") might be
strongly biased by the existence of very small values in time
series which can be largely amplified if their negative expo-
nents are considered; thus they can dominate the results com-
pletely [46,47]. Unfortunately, this situation only slowly im-
proves with a time series length so that some other, more
refined techniques are required [47].

Influence of N on the results can be inferred after inspect-
ing Fig. 13. Apart from the longer error bars for
N=100 000, for both methods the spectra for longer signals
are smoother near the theoretical points, which reflects more
reliable fits according to Eq. (4) and (13).

C. Multifractal signals: binomial cascades

In this section we present results for processes which are
inherently multifractal, i.e. binomial multiplicative cascades
[22,24]. Processes of this kind are commonly used to model
fluid turbulence and due to the recently formulated hypoth-
esis of similarity between the turbulence and the evolution of
financial markets [34], they are more and more often applied
in econophysics [28,29,31-33].

1. Deterministic case

Let us consider a probability measure p, distributed uni-
formly on interval [0, 1] and two numbers m,m; such that
mgy+m;=1. In the first step we uniformly spread a fraction
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A

FIG. 12.

12.  (Color online) Lévy process
a;=1.5: f(a) (open circles) obtained with
MFDFA procedure (left-hand column) for differ-
ent polynomial orders: from P! (top) to P@
(bottom) and with WTMM procedure (right-hand

column) for different wavelets: from ) (top) to
) (bottom) compared with the corresponding
exact theoretical values of f(«) (filled squares).
Time series of length N=250 000 were used; er-
ror bars indicate standard deviation of data points
calculated from 10 independent realizations of
the process.
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my of total mass on the left subinterval [0,1/2] and a frac-
tion m; on the right subinterval [1/2,1]. In the second
and subsequent steps we repeat this procedure for each
of the subintervals using in each step the same fractions
mq and m; of the higher-level subinterval mass. In the kth
step, each subinterval j (j=1,...,2%) can be labelled by a
unique sequence [7Y)]= 77Y> ng), . 77,(3), where nfj) is
either O or 1. Thus, a measure of this subinterval is
Mk[n(j)]=m§_"0_l)m;’(j_l), where n(j) denotes a number of
unities in the binary representation of j. This construction
leads to preservation of the total mass on subinterval [0, 1],
i.e., the measure u, is conservative = ;[ 7Y]=1. In the limit
k— o the measure u; goes to binomial measure u.

The above-defined procedure generates a binomial cas-
cade that after k,,, steps can be represented by a time series

{xj}j-v:l of length N=2Fmax such that

1k 5 o dE IR §
Jw %
W N =100,000 I
7 R
0.5 r el qF b
FFé-t N
e e
FOfi-
L S y
= t t t }
1F é@e‘ J
B N=2 ]
2 b
0.5 o N
g
o4 J
0 193 MFDFA
¥ IR | - T
0 10 025 05 075 1

025 05 075
o

FIG. 13. (Color online) Lévy process a;=1.5: f(e) (open
circles) for different time series lengths: N=100000 (top) and
N=250000 (bottom) together with the corresponding theoretical
values of f(«) (filled squares). Performance of MFDFA (P, left-
hand column) and WTMM (%), right-hand column) is compared.
Error bars indicate standard deviation of data points calculated from
10 independent realizations of the process.

PRI R
0.75 1

x;=a"00(1 = g)fmaxnG=D), (20)

where a=my and a € (0.5, 1). The resulting signal possesses
singularities of strength depending on the parameter a and,
for a significantly less than 1, its multifractality comes
mostly from the temporal correlations (for a— 1 the broad
probability distribution of x; also contributes much). The
analytical expression for the scaling exponent and for the
singularity spectrum can both be derived straightforwardly

[22],

In[a?+ (1 —a)?]

W=-"""a (21)
a 1“[61‘11:(;1) 0 (23)

In order to check how the MFDFA and WTMM methods
work for different values of the parameter a, we consider
time series constructed for a=0.55 (a relatively smooth sig-
nal), for a=0.75 (existence of sharp singularities) and for an
intermediate case of @=0.65. It comes from the definition
[Eq. (20)] that by increasing a we enhance the role of heavy-
tailed pdf of {x;} and we also make the multifractality richer
(larger Aa). Conversely, for a— 0.5 the theoretical singular-
ity spectrum tends to a monofractal one. We perform calcu-
lations on time series of length N=131,072, i.e., in each case
we stop the cascade-generating procedure at k., =17. Unlike
for the Brownian and Lévy processes, here due to the deter-
ministic nature of the cascades under study we create only
one time series for each value of the parameter a. Figure
14(a) shows exemplary plots of F,(s) for MFDFA (P?) and
Is'Z(q,s")|"4 for WTMM (¢/¥). Globally for a large range of
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FIG. 14. (Color online) Deterministic bino-
mial cascade a=0.65: (a) Examples of fluctuation
function F,(s) and rescaled partition function
[sZ(q,s/41)]"4 for different values of Rényi pa-
rameter: g=-5 (squares), g=—2 (triangles up),
q=2 (circles), and g=5 (triangles down). (b) and

(q)

(c) Scaling exponents {g) for MFDFA (P?)) and
for WIMM (/%)) are presented together with
their theoretical behavior (solid line). Cascade
was generated in k=17 stages and its length was
equal to N=131 072 points.

s the scaling is relatively good despite the local fluctuations.
Similar results can be obtained by using different polynomi-
als in MFDFA or different Gaussian derivatives in WTMM
(not shown here). As regards 7(g) shown in the panels (b)
and (c), the estimated spectra resemble the theoretical one
with the WTMM-based spectrum presenting almost perfect
agreement with theory.

The singularity spectra computed for distinct variants of
MFDFA and WTMM are compared in Fig. 15 with the ones
theoretically derived according to Eq. (22) and (23). Interest-
ingly, for a=0.55 the only case in which we observe an
agreement between theory and numerical estimates is for
WTMM with ") (top right-hand panel). For other wavelets
the spectra deviate in either a or in f(a) and the same hap-

e . — I
f {2=055
DPU)
0.5f ipg 1T
pas MFDFA WTMM
0 = : :
1r {22065
- i
3
= 0.5 1t
0 : : :
1r =075
o5t 1t
0 . . .

FIG. 15. (Color online) Deterministic binomial cascade: Singu-
larity spectra (open circles) for different mass allocations between
subintervals: a=0.55 (top), a=0.65 (middle), and a=0.75 (bottom).
Left-hand column: results from MFDFA with different polynomials:
P (squares), P? (triangles up), P® (diamonds), and P (tri-
angles down). Right-hand column: results from WTMM with dif-
ferent wavelets: {1 (circles), 2 (triangles up), > (diamonds),
and ¥ (triangles down). Theoretical f() spectra are denoted by
solid lines. Cascade was generated in k=17 stages and its length
was equal to N=131 072 points.

pens for all the analyzed polynomials of MFDFA (top left-
hand panel). A much better performance of WTMM is seen
for a=0.65 (middle right-hand panel) where only ¢ does
not reproduce the theoretical spectrum, while by using the
other Gaussian derivatives we get the correct outcomes.
MFDFA offers us the f(a) spectra that slightly deviate from
the expected one for positive values of the Rényi parameter ¢
(corresponding to large signal fluctuations, left arms in the
middle-left-hand panel of Fig. 15) but their shape does not
depend on the polynomial P, Similar conclusions regarding
MFDFA can be formulated for a=0.75 (bottom left-hand
panel). In contrast, WTMM seems to be unable to cope with
the latter kind of data for small (negative) ¢’s (small signal
fluctuations): it significantly underestimates width of the
spectrum on higher-a side which is most strikingly evident
for /2 and ¥ (bottom right-hand panel). An agreement
between theory and practice is reached only for positive ¢’s
except the wavelet /. In general, as regards the whole
spectra, for a=0.75 the wavelets /" and ® behave more
reliably than the remaining ones. It is also noteworthy that
for all the studied values of a, the MFDFA results are re-
markably independent of the polynomial choice, the property
that cannot be attributed to WTMM and the choice of a
wavelet.

For the next point of our analysis we prepare time series
of different lengths N=16 384, N=65 536, and N=131072
in order to investigate how smaller N can affect the reliabil-
ity of calculations as compared to long signals. Based on Fig.
15, for each a we choose a wavelet with the best perfor-
mance: V) for a=0.55, ¢ for a=0.65, and y¥ for
a=0.75. MFDFA is represented by the polynomial P, Fig-
ure 16 collects plots of the corresponding singularity spectra;
in a sharp contrast to Figs. 10 and 13, in the present case the
spectra are practically not sensitive to time series length in a
wide range of N. At the end, we note that the outcomes
presented here for MFDFA agree with the ones from Ref.
[22].
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FIG. 16. (Color online) Deterministic binomial cascade with
a=0.55 (top), a=0.65 (middle), and a=0.75 (bottom): Singularity
spectra (open circles) for different cascade stages: k=14
(N=16384, circles), k=16 (N=65536, squares), and k=17
(N=131 072, triangles) together with the corresponding theoretical
spectrum (solid line). Left-hand column: results from MFDFA with
P Right-hand column: results from WTMM; for each value of
parameter a a wavelet with the best performance (see Fig. 15) is
used: ¢V (top), ¥ (middle), and ¥ (bottom).

2. Stochastic case

The above-described procedure can be generalized in a
number of ways, e.g., by increasing the number of equal-size
subintervals into which an interval is splitted at each cascade
stage k and/or by randomizing the mass allocation among the
subintervals. This latter way is especially appealing because
it allows one to eliminate the unrealistic determinism of the
previous example. Even more general models that can be
related to financial data are available in literature (see, e.g.,
Refs. [30,48,49]) but within the scope of the present work it
is sufficient that we concentrate exclusively on some simple

FIG. 17. (Color online) Log-Poisson binomial cascade with
vy=1.4: Mean singularity spectra f(a) (open circles) obtained with
MFDFA (left-hand column) for different polynomials: from P
(top) to P (bottom) and with WTMM (right-hand column) for
different wavelets: from V) (top) to ¢* (bottom), compared with
the corresponding theoretical spectrum (solid lines). Cascade was
generated in k=17 stages (N=131 072). Error bars indicate standard
deviation of data points calculated from 10 independent realizations
of the process.

PHYSICAL REVIEW E 74, 016103 (2006)

fla)

FIG. 18. (Color online) Log-Poisson binomial cascade with
y=1.4: f(a) (open circles) for different cascade stages: k=14
(N=16384, top), and k=16 (N=65 536, bottom) together with the-
oretical spectrum (solid lines). Performance of MFDFA (P, left-
hand column) and WTMM (g%, right-hand column) is compared.
Error bars indicate standard deviation of data points calculated from
10 independent realizations of the process. Plots should be com-
pared with the corresponding panels of Fig. 17, where the results
for signals of k=17 (N=131 072) are shown.

stochastic cascade processes of multifractal nature. Proceed-
ing along this line, we preserve the binomial character of the
cascade but we replace the conservative measure with a mul-
tiplicative one that allows the multipliers m; to be indepen-
dent, identically distributed random variables drawn from a
specific distribution. Now the total mass on interval [0,1] is
preserved only in a statistical sense: E(Z;m;)=1. It has been
shown that a resulting process produces signal with multi-
fractal properties [29,50,51]. Random multiplicative cas-
cades, and especially their iterative versions [32,52], are in
practice much more interesting than their deterministic coun-
terparts due to the fact that they are able to mimic stochastic

flo)

FIG. 19. (Color online) Log-gamma binomial cascade with
y=1, B=In2: f(a) (open circles) obtained with MFDFA (left-hand
column) for different polynomials: from P (top) to P (bottom)
and with WTMM (right-hand column) for different wavelets: from
D (top) to * (bottom), compared with theoretical spectra (solid
lines). Cascade was generated in k=17 stages (N=131072). Error
bars indicate standard deviation of data points calculated from 10
independent realizations of the process.
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FIG. 20. (Color online) Log-gamma binomial cascade with
v=1, B=In2: f(a) (open circles) for different cascade stages:
k=14 (N=16 384, top) and k=16 (N=65 536, bottom) together with
theoretical f(«) (solid lines). Performance of MFDFA (P, left-
hand column) and WTMM (%), right-hand column) is compared.
Error bars indicate standard deviation of data points calculated from
10 independent realizations of the process. Plots should be com-
pared with the corresponding panels of Fig. 19, where the results
for signals of k=17 (N=131072) are shown.

character of financial volatility fluctuations over time. Here
we discuss the singularity spectra of three common versions
of such processes, i.e., Poisson, Gaussian, and gamma mul-
tiplicative cascades.

(a) Log-Poisson cascade: Let us start with a discrete cas-
cade characterized by the multipliers m(7,, ..., 1) such that

M(n,,...,m):==Inm(n,,...,n) have Poisson distribution
ey~
pl)=—"". (24)

At a stage k, an interval j has the mass

w79 =m(p)m(g, ) - -m(yy, ....m)  (25)

and therefore

PHYSICAL REVIEW E 74, 016103 (2006)

—lan=2M(7]1,---,7h)- (26)

The sum on the right-hand side is also Poisson distributed
with y—ky in Eq. (24) and this leads to the following for-
mula for the singularity spectrum [29]

f@) =1-—L + alny(yela). 27)
In2

This spectrum assumes its maximum at ay="7y and has nega-
tive values for @> 7y and for «— 0 if y>1In 2. Based on the
above-described generating procedure we create a time series
representing the k=17th stage of the log-Poisson binomial
cascade and by applying MFDFA and WTMM we estimate
f(a@). Figure 17 collects the results obtained with different
variants of wavelets (V,...,¢®*) and polynomials
(P, ..., PW),

For WTMM (right-hand side) we observe the mean spec-
tra whose increasing arms generally agree with the spectrum
of Eq. (27) but, on the contrary, the decreasing arms com-
pletely fail to comply with theory. MFDFA works substan-
tially better than WTMM for a> ¢, even if it does not
reproduce the theoretical curve ideally after averaging f(a)
over all 10 individual cascade realizations. This resembles
the results for the deterministic cascades with a=0.75 (Fig.
15), where we also noticed problems with estimating f(a) for
a>1 by means of WITMM. Therefore, this seems to be a
more general issue of dealing with signals comprising rela-
tively smooth singularities associated with high a’s. Both for
MFDFA and for WTMM, significant error bars on both co-
ordinates reveal strong instability of the calculated spectra
which vary from sample to sample. Figure 18 displays f(«)
for different time series lengths (different k’s). Again,
MFDFA gives better results in respect to Eq. (27) even for
relatively short signals than does the wavelet-based method.
These outcomes for the log-Poisson cascades collected in
Figs. 17 and 18 qualitatively resemble the results of Ref. [22]
for the same type of data.

FIG. 21. (Color online) Log-normal binomial
cascade with A=1.1: f(«) (open circles) obtained
with MFDFA (left-hand column) for different
polynomials: from P (top) to P® (bottom) and
with WTMM (right-hand column) for different
wavelets: from V) (top) to ¥ (bottom) com-
pared with the theoretical spectra (solid lines).
Cascade was generated in k=17 stages
(N=131 072). Error bars indicate standard devia-
tion of data points calculated from 10 indepen-
dent realizations of the process.
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FIG. 22. (Color online) Log-normal binomial
cascade with A=1.1: f(a) (open circles) for dif-
ferent cascade stages: k=14 (N=16 384, top), and
k=16 (N=65 536, bottom) together with theoret-
ical f(a) (solid lines). Performance of MFDFA (
P left-hand column) and WTMM (), right-
hand column) is compared. Error bars indicate
standard deviation of data points calculated from
10 independent realizations of the process. Plots
should be compared with the corresponding pan-
els of Fig. 19, where the results for signals of
k=17 (N=131072) are shown.

(b) Log-gamma cascade: As another example of a multi-
plicative cascade we investigate a process with the multipli-
ers whose logarithms are taken (with minus sign) from the
gamma pdf,

px) = B P (y), (28)

where 8, y>0. A sum of k i.i.d. random variables with such
distributions is also a gamma distribution with y— k. Fol-
lowing Ref. [29] we can write the analytical form of the f(«)
spectrum

fla) =1+ yIny(afly) + (y— apB)/in2 (29)

which reaches its maximum for ay="7y/p.

The plots in Figs. 19 and 20 qualitatively resemble those
from Figs. 17 and 18 and, at least in part, similar conclusions
can be drawn in the present case as it was for the log-Poisson
one. Though, we note that at the decreasing part of the f(«)
curves the error bars indicate extreme unstability of the com-

F(s) | 1sZ (g 5411

puted spectra, suggesting that here neither of the two meth-
ods can be trusted for ¢ <0. This is caused by the fact that in
this case plots of F,(n) and of [s'Z(g,s')]"® (not shown)
present so weak scaling that even a small change of the fit-
ting range of n and s’ profoundly affects f(«). (See also the
respective discussion related to the Lévy processes.)

(c) Log-normal cascade: Finally, we consider the
multipliers whose logarithms are taken from a Gaussian
distribution

1 2
p(x) — We—(x— N) /202. (30)

The singularity spectrum for a log-normal cascade

1
=1-——(a=-N)? 31
fla) 2oz @M (31
has a maximum for ay=N\ and extends over — <a < +%
due to a possible lack of mass conservation. This theoretical

FIG. 23. (Color online) (a) Transaction-to-
transaction logarithmic price increments of exem-
plary stock traded on Deutsche Borse: Volk-
swagen (VOW): Examples of fluctuation function
F,s) and rescaled partition function
[sZ(q,s/41)]"4 for different values of Rényi pa-
rameter: g=—5 (squares), g=-2 (triangles up),

q=2 (circles), and g=5 (triangles down). (b) and
(c) Mean scaling exponent 7{g) for MFDFA
(P?) and for WIMM (%) calculated from
stocks corresponding to 30 companies of DAX
(empty circles). Straight lines in bottom panels
denote a monofractal, linearly uncorrelated refer-
ence signal.
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FIG. 24. (Color online) Mean f(a) spectra obtained by MFDFA
(a) and by WTMM (b) for 30 stocks corresponding to DAX com-
panies (empty circles) together with their randomly reshuffled coun-
terparts (full squares). Error bars for the original data denote stan-
dard deviation of data points calculated from 30 stocks.

spectrum must be compared with spectra derived from time
series by means of the MFDFA and WTMM methods. Figure
21 presents such a comparison for the polynomials
PW . PW used in different variants of MFDFA (left-hand
column) and for a few Gaussian derivatives ", ... ¥
used in WTMM (right-hand column). It is clear that, as
regards the mean spectra calculated from 10 independent re-
alizations of the cascade and a range of a’s for which
f(a)>0, both methods give results that for a log-normal
cascade are much closer to theoretical predictions than it was
for the two cascades discussed above. This is particularly
evident for the decreasing part of the spectra, despite the
existing deviations for a=1.5. We observe a satisfying sta-
bility of the mean spectra across different variants of the
methods and we do not notice any significant differences
between the spectra produced by MFDFA and by WTMM
except the fact that the standard deviations of data points
tend to be larger for WTMM than for MFDFA. Also if we
look at the average spectra evaluated for different signal

T — T — T — T

(@

!

F(s) | [sZ(q si41n"

q

PHYSICAL REVIEW E 74, 016103 (2006)

lengths (Fig. 22) we see that the results differ mainly in
stability across process realizations. In general, the standard
deviations in « are relatively small while they are large in
f(a@); they are also much smaller in the increasing parts of
the spectra than in the decreasing ones.

IV. STOCK MARKET DATA

In this section we apply both methods of the multifractal
analysis to real data from a stock market. Let us denote
by P,(;) the price of an asset s at the ith consecutive time
instant (z; may in general not be equally spaced in time).
We create a time series of logarithmic price increments
pi(t)=In[P(t;11)]-1In[Py(z;)], where i=1,...,N. The differ-
ence between our price increments p,(z;) and the returns is
that #; denote the moments of transactions instead of the mo-
ments of constant-frequency data sampling. It should be
noted that such a choice of data, motivated by our recent
interest [20], leads to the qualitative results that can be also
drawn for the standard returns.

We carried out the calculations for the time series repre-
senting 30 stocks comprised by Deutsche Aktienindex
(DAX) and for the ones representing 30 Dow Jones Indus-
trial stocks (DJTs) in the period 12/01/1997-12/31/1999 [53].
Each time series under study had different length ranging
from 63 000 (Karstadt) to 2 236 000 (The Walt Disney Co.)
data points. In a preliminary stage the data was preprocessed
in the following way: we removed all overnight price incre-
ments (they were characterized by different statistical prop-
erties than the rest of the increments) and we also removed
all the constant price intervals with more than 20 consecutive
zeros (the MFDFA procedure requires a compact support of
the signal in order to avoid the divergence of F, for ¢<<0
and, thus, in order to improve scaling; fortunately, the
wavelet-based method is insensitive to the presence of such
zero intervals, because it only deals with the maxima of Tl/,).
Due to the fact that the analyzed data is characterized by
both the broad probability density function and by the corre-

FIG. 25. (Color online) (a) Transaction-to-
transaction logarithmic price increments of exem-
plary DJI stock: IBM Corp.: Examples of fluctua-
tion function F, q(s) and rescaled partition function
[sZ(q,s/41)]"4 for different values of Rényi pa-
rameter: g=-—5 (squares), g=—2 (triangles up),
q=2 (circles), and g=5 (triangles down). (b) and

(c) Mean scaling exponent 7{g) for MFDFA
(P?) and for WIMM (¢%) calculated from
stocks corresponding to 30 DJI companies
(empty circles). Straight lines in bottom panels
denote a monofractal, linearly uncorrelated refer-
ence signal.
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FIG. 26. (Color online) f(a) obtained by MFDFA (a) and by
WTMM (b) for 30 stocks corresponding to DJI companies (empty
circles) together with their randomly reshuffled counterparts (full
squares). Error bars for the original data denote standard deviation
of data points calculated from 30 stocks.

lations in the temporal domain, we additionally estimate the
contribution of each multifractality source by calculating
f(a) for the original and for the randomly reshuffled signals.
Obviously, in the latter case the spectra may depend only on
pdf’s.

We start with the results obtained for the DAX stocks.
Figure 23(a) shows the fluctuation function F,(s) and the
rescaled partition function |s’Z(g,s")|"/? for a randomly se-
lected stock. Good-quality scaling for a broad range of s can
be easily seen for different ¢’s. Figures 23(b) and 23(c) show
7(q) averaged over all 30 stocks, while Fig. 24 displays the
related mean singularity spectra (open circles). As this figure
documents, maxima of f(a) are localized approximately at
a=0.52 (MFDFA) and a=0.53 (WTMM) which suggests a
weak trace of linear correlations in data. The main difference
between the spectra obtained by each of the two methods is
that their widths are different: MFDFA produces a thinner
spectrum than does WTMM. We can say that for the stock
market data WTMM detects a richer multifractality than does
MEFDFA. This also refers to the reshuffled signals, which of
course do not show any linear correlations and their maxima
are located precisely at @=0.5. For the DJI stocks (Fig. 25
and 26, open circles), f(a) has a maximum at a@=0.51
(MFDFA) and a=0.53 (WTMM), while for the reshuffled
signals a maximum is at «=0.5, which is consistent with the
corresponding results for the German market. This consis-
tency is also seen in the relation between widths of the real-
data spectra derived by MFDFA and by WTMM. In Fig. 26
both methods give spectra that on average are narrower than
for the German stocks in Fig. 24, while the opposite refers to
f(a) for the reshuffled signals (filled squares). For DAX, it is
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even disputable whether the reshuffled-data spectra may be
considered multifractal. However, significant standard devia-
tions of data points (denoted by error bars in Figs. 24 and 26)
might question validity of these observations. Thus, we are
not justified to infer any decisive conclusions about similar-
ity or dissimilarity of the outcomes of MFDFA and WTMM
for our financial signals. (This can be compared with the
outcomes of an analysis of river run-off and precipitation
data in Ref. [10], where both methods produced results re-
sembling each other.)

Table I summarizes the results for the original and for the
randomized signals coming from both markets. In each case
the width A« is larger for an original than for a randomized
signal which is due to the existence of strong nonlinear cor-
relations. A more careful inspection of Table I allows us to
state that MFDFA identifies the temporal correlations as the
principal source of multifractality (Aa,,,¢<Aa). The out-
comes of WTMM also go in this direction but they are bur-
dened with larger statistical uncertainty.

V. CONCLUSIONS

Our aim was to verify which of the two existing modern
methods of detecting multifractalityy, MFDFA or WTMM,
gives more reliable results when applied to a few specific
sorts of data. In order to quantify their behavior we tested
these methods on computer-generated time series with the
exactly known fractal properties and then we performed cal-
culations with an exemplary real data from a stock market.
Our results indicate that from a global point of view the
multifractal DFA works better in the majority of situations
presented here. First of all, as our examples of the fractional
Brownian motion and the truncated Lévy process show,
MFDFA is more reliable in properly detecting monofractal
and bifractal behavior than is the wavelet-based method. In
such a case WTMM can spuriously suggest multifractality if
a too wide range of the Rényi parameter is used. Thus, in an
analysis of a signal with unknown fractal properties, if one
must determine whether it is monofractal or multifractal, one
faces a fundamental problem of choosing a reliable range of
g. What makes finding a solution to this problem difficult is
that for such a process one cannot assume which values of g
give a correct result and which do not. From this perspective,
MFDFA can be a much better option due to the fact that one
may apply it more automatically, without paying too much
attention to a choice of g. For obtaining reliable results it is
sufficient if ¢ are not chosen extremely large. Performance of
both methods becomes worsen with decreasing time series
length, but typically the DFA-based method works better
than WTMM also for shorter signals (of length N~ 10%).

TABLE 1. Numerical results for the mean singularity spectra for the DAX and DJI stocks.

DJI: MFDFA DJI: WTMM DAX: MFDFA DAX: WTMM
Aa 0.13+0.05 0.25+0.10 0.16+0.05 0.26+0.07
Aatang 0.04+0.02 0.08+0.02 0.02+0.01 0.05+0.02
A/ A 0.30+0.19 0.32+0.15 0.16+0.07 0.19+0.09
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For actual multifractal data both MFDFA and WTMM are
able to roughly assess f(a) at least for ¢>0, while taking
g <0 into consideration is hazardous, especially for WTMM
as our discussion on binomial cascades shows. A serious ad-
vantage of MFDFA over WTMM is a better stability of the
former in respect to different P’s; changing the wavelet
Y can substantially affect the outcomes of WTMM (Figs.
15, 17, and 19). Furthermore, our findings indicate that
WTMM performs poorly with signals comprising singulari-
ties of strength a>1 (e.g., the deterministic binomial cas-
cades, the log-Poisson and the log-gamma cascades): In this
case it fails to detect the smoothest ones. This might be re-
lated to the fact that WTMM has inherent problems with
such signals [24,25]: By construction, in order for WTMM to
be capable of detecting the singularities of strength m,;,, the
corresponding wavelet must be at least ¢/"min). In conse-
quence, if one is interested in investigating a broad range of
singularities including the ones for @>> 1, one must choose a
high order Gaussian derivative ¢ or must switch to
MFDFA otherwise. Finally, accuracy of MFDFA is sensitive
to the presence of linear correlations in data. Our results for
the fractional Brownian motion show that the more persistent
the signal, the worse MFDFA performance. But even for
H>0.5 it overperforms its wavelet competitor, as it does
also for data with broad pdf (Figs. 12 and 15).
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However, despite these observations that are in favor of
MFDFA, we do not disregard the wavelet-based method
completely. For example, it can still be successfully used for
multifractal signals provided that one is principally interested
in fluctuations associated with moderate positive g’s. As our
analysis reveals, for such ¢’s in a number of model situations
WTMM acts as well as does MFDFA. If one is careful
enough to confine an analysis to some small range of |g| for
which scaling of Z(g,s) is particularly good and based on a
good statistics of data, then the increasing arms of the f(«a)
spectra for monofractal signals can be defined on a narrow
range of a. Thus, if compared with some benchmark like the
fractional Brownian motion, the results can indicate the char-
acter of the signals correctly. WTMM can also be a good
alternative to MFDFA for signals which are defined on a
noncompact support and comprise a significant number of
zeros. Furthermore, one must keep in mind that across our
analysis we applied only a single wavelet family of the
Gaussian derivatives. Although these wavelets are particu-
larly popular in studies of empirical signals, we cannot ex-
clude a possibility that some other type of wavelets can act
better if applied to WTMM. Finally, a caution is needed
about susceptibility of WTMM several factors in its numeri-
cal implementation. These in particular involve noise in
maxima-detecting wavelet transform computation at small
scales and the related boundaries.
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